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Abstract: A bacteriohopanetetrol cyclitol ether with a new configuration of its carbapseudopentose
moiety has been isolated from the cyanobacterium 'Anacystis montana' and compared to a similar
hopanoid previously isolated from Zymomonas mobilis. As shown by two dimensional !H-NMR
spectroscopy using Nuclear Overhauser Effect correlations, both compounds were diastereomers and
differed from a third stereomer found in the biphytanyl lipids of the thermoacidophilic archaebacterium
Sulfolobus sp.

Triterpenoids of the hopane series present a huge diversity of side-chain structures.! In several
bacteriohopanetetrol or bacterichopanepentol derivatives, a carbapseudopentose moiety is linked via an ether
bond to the C-35 hydroxy group of the polyhydroxylated side-chain.2 For all such bacteriohopanepolyol ethers
isolated to date, the identity of the !H- and 13C-NMR data concerning the cyclitol moiety pointed toward the
existence of a single diastereomer. Tentative identification of the configuration has been already attempted for the
compound isolated from Zymomonas mobilis,3 but could not be confirmed in this study. We wish to report here
the isolation and identification of a new bacteriohopanetetrol cyclitol ether from the cyanobacterium 'Anacystis
montana',* and the determination of the relative configurations of the two related carbapseudopentose series
found in the tetrol ethers from 'A. montana’ on the one hand and from the previously investigated bacteria on the
other hand.

TLC separation of the acetylated CHCl3/CH3OH extract from ‘A. montand', afforded diplopterol and the
mixture of acetylated hopanoids 1 and 2.5 All data (\H- and !3C-NMR, mass spectrometry) were quite similar
to those of the heptaacetate of the bacteriohopanetetrol cyclitol ether previously isolated and led to assign the
same planar structure to both compounds. Comparison of H-NMR spectra of the carbapseudopentose moieties
from the two hopanoids isolated from 'A. montana' or Z. mobilis showed however significant differences for
chemical shifts and coupling constants (Tab. 1), suggesting the structures of two diastereomers. One of the most
striking features was the presence of a 4J W coupling constant (1,5Hz) between the H-1 and the H-4 protons in
the 'A. montana' hopanoid, which was not observed in the Z. mobilis hopanoid. This suggested different
configurations at C-1 in the two carbapseudopentoses. Two-dimensional Nuclear Overhauser Effect correlation
experiments (NOESY) carried out on both compounds allowed to determine the relative configurations, which
differ one from another at C-1 and C-5 (Fig. 1).
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Figure 1. NOE observed between protons of cyclitol moieties of hopanoids

isolated from 'Anacystis montana' and Zymomonas mobilis after CD30D exchange.
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Table 1. Comparison of !H-NMR spectra (CgDg) of bacteriochopanetetrol cyclitol ethers
isolated from 'Anacystis montana' and Zymomonas mobilis

'Anacystis montana’ Zymomonas mobilis
5 (ppm) J (Hz) 8 (ppm) J(Hz)
H-1  3.80 (dd) J12=45 4,06 (d) J12=175
Jwi-4=15
H-2 522 (ddd) Jp.1=45 4.27 (q) Jp.1=15
Jo.NH = 8.5 JhoNH =75
J2.3=95 Jp.3=175
H-3  5.63 (dd) J32=95 5.25 (dd) J3.0=15
J3.4=50 J3.4=55
H-4 545 (dd) J43=50 5.61 (d) Ja3=55
Iwa-1=15
NH 6.70 (d) INH2 =85 5.49 (d) INH2 =75
H-6a 437 (d) Jea-6b = 11.5 434 (d) J6a-6b = 11.5
H-6b  4.45 (d) J6b-6a=11.5 4.45 (d) J6b-6a = 11.5

Incorporation of 13C labelled D-glucose into the hopanoids of Z. mobilis and Methylobacterium
fujisawaense or of 13C labelled acetate into those of Methylobacterium organophilum showed that the five-
membered ring of the carbapseudopentose is made by formation of a carbon/carbon between C-1 and C-5 of a
D-hexose skeleton. A hypothetical biogenetic pathway could be proposed starting from D-fructose and
resembling that involved in the formation of myo-inositol from D-glucose. The numbering of the
carbapseudopentose five-membered ring is thus directly derived from the D-glucose numbering, and the
absolute configurations, i.e. (1R, 2R, 3R, 4S, 55) for the 'Anacystis montana' hopanoid and (15, 2R, 3R, 4S5,
5R) for the Z. mobilis hopanoid, correspond to those expected from D-glucose and D-fructose as precursors.’

Recently a revised structure has been proposed for the nonitol found in the polar heads of the biphytanyl
lipids of the thermoacidophilic archaebacterium Sulfolobus sp. This nonitol consists of glycerol linked via an
ether bond to a carbapseudopentose with same carbon skeleton and hydroxylation pattern as those found for the
two former carbapseudopentoses in eubacteria but with a different configuration.8 It remains now to be tested
whether all these pseudopentoses from eubacteria and archaebacteria are biogenetically related.
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